matrix n. (pl. matrices 或matrixes) 1.【解剖學】子宮;母體;發(fā)源地,策源地,搖籃;【生物學】襯質(zhì)細胞;間質(zhì);基質(zhì);母質(zhì)。 2. 【礦物】母巖;脈石;【冶金】基體;【地質(zhì)學;地理學】脈石;填質(zhì);雜礦石。 3. 【印刷】字模;型版,紙型;鑄型,陰模。 4.【陣】(矩)陣,方陣;母式;【物理學】間架;【無線電】矩陣變換電路。 5.【染】原色〔紅黃藍白黑五種〕。 the matrix of a nail 【解剖學】指甲床。
Matrix variation basis of sparse matrix multiplication 矩陣相乘的壓縮存儲算法
Similarly , the order of matrix multiplication is important 同樣,矩陣相乘的順序也是重要的。
The following illustration shows several examples of matrix multiplication 下圖顯示了矩陣相乘的幾個示例。
Congruent matrix multiplication 相合矩陣乘法
On the other hand , we study asymptotically fast algorithm for rectangular matrix multiplication 本文還研究了矩陣乘法的漸近快速算法。
You can accomplish this by using a matrix multiplication followed by a matrix addition 可通過先使用矩陣乘法再使用矩陣加法來完成此操作。
The simplification matter of matrix multiplication is settled thoroughly in the way given in the paper 徹底解決了矩陣乘法計算的簡化問題。
The following matrix multiplication will perform the pair of transformations in the order listed 下面的矩陣乘法將按照列出的順序進行這對變換。
But , remember that the product of matrix multiplication is dependent on the order of the operands 不過,記住矩陣乘法的結(jié)果是依賴于操作數(shù)的順序的。
This paper introduces the basic idea and algorithm of sparse matrix multiplication by using incompact storage method 摘要介紹了對稀疏矩陣進行壓縮存儲時,稀疏矩陣相乘運算的基本思想和算法。
In mathematics, matrix multiplication is a binary operation that takes a pair of matrices, and produces another matrix. This term may refer to a number of different ways to multiply matrices, but most commonly refers to the matrix product.